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Spectra or decay rates of spatial fluctuations are calculated from mean-field theory or Boltz-
mann’s equation for thermal and athermal lattice-gas automata, with the emphasis on long-lived
hydrodynamic modes. The spectra provide information on isotropy, existence of spurious conserva-
tion laws, and time and length scales of hydrodynamic behavior. Particularly important is the range
of validity of generalized hydrodynamics with wave-number-dependent sound speed and transport
coefficients. These properties give a quantitative explanation of several existing, but unexplained
simulation results on the so-called negative bulk viscosities, and on the strong dispersion in the

simulation results on sound damping.
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I. INTRODUCTION

Spontaneous spatial fluctuations around equilibrium
in real fluids and lattice gases decay on the average as
exp(zy (k)t], and so do small macroscopic deviations from
equilibrium. The different decay modes A at wave num-
ber k are the shear, heat, and sound modes, as well as
kinetic modes. In this paper we study the spectra or hy-
drodynamic dispersion relations z) (k) of spatial fluctu-
ations in the occupations of single-particle states, which
provide basic information about the collective excitations
and their relevant time and length scales. The spectra
show how the speed of sound, damping constants, and
transport coefficients depend on the wavelength of the
excitations, on the thermodynamic variables, and on the
microscopic details of the models. In this manner we
are able to develop important and practical criteria to
judge the applicability of lattice-gas models for the study
of flow properties and thermal effects in nonequilibrium
fluids.

The set of (real parts of) eigenvalues determines the
basic set of relaxation constants or time scales in the
problem. Given the frequency or wavelength of inter-
est one can judge from the spectrum which eigenmodes
of the kinetic equation are relevant. In the hydrody-
namic regime of fluids the wavelengths and time scales
of interest are large compared to all correlation lengths
(range of interaction, lattice distance, mean free path
4o), and microscopic times (collision time, mean free time
to = 1/wp). This case is mostly relevant for scattering
experiments on fluids, where the Landau-Placzek theory
fully explains the dynamic scattering function S(k,w)
on the basis of the slow hydrodynamic modes [1]. As
the density decreases one enters into the kinetic regime,
where the typical wavelengths and time scales are on the
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order of the mean free path ¢, ~ 1/p and the mean
free time to = 1/wp, respectively. Here one needs to
include kinetic modes with eigenvalues on the order of
wp. This case is typical for gases under normal pressure
and temperatures [1]. Upon further reduction of the den-
sity the wavelengths become small compared to £y, and
one enters in the free-particle regime, relevant for Knud-
sen gases. We will also consider crossover between these
three regimes.

In the literature so far only the spectrum of one partic-
ular lattice gas has been discussed [2], but no systematic
analysis has been presented of the implications of these
spectra for the fluid properties of lattice gases. In the
present paper the main emphasis is on the hydrodynamic
part of the spectrum. On large space and time scales one
expects that the hydrodynamic eigenvalues 2y (k) are in-
dependent of the details of the rather primitive micro-
scopic dynamics of lattice gases.

A spatial fluctuation has the general form §f(r,c,t) =
a(k,c)explik - r + zy(k)t]. The requirement that §f
satisfies the linearized kinetic equation in mean-field ap-
proximation leads to an eigenvalue equation, the solu-
tion of which yields the eigenvalues z (k). If the imag-
inary part, Im 2)(k) = c;(k)k is nonvanishing, the ex-
citation propagates with a speed cs(k). The real part
Re z)(k) < O represents damping. Unstable modes cor-
respond to Re z)(k) > 0. The long-wavelength excita-
tions (k — 0) are either soft hydrodynamic modes, re-
lated to conservation laws, with Re 2)(k) ~ O(k?) or
hard (rapidly decaying) kinetic modes with Re 2)(0) < 0.
Apart from the detailed description of standard hydrody-
namics the spectra of slow excitations in lattice gases pro-
vide the following type of information about the lattice-
gas fluids.

(a) Conservation laws. The standard conservation
laws of number, momentum, energy, and possibly of other
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quantities are reflected in the spectrum as soft eigen-
values with Re z)(0) = 0. In addition the spectrum
may show soft modes at a finite wave number ko, with
Re z)(ko) = 0. The occurrence of such soft modes re-
veals the existence of the spurious conservation laws. The
best-known examples are the staggered momentum den-
sities [3] and the staggered number densities [4,5]. These
modes are soft near a wave number ko equal to half a
reciprocal lattice vector.

(b) Isotropy. The symmetries of the lattice gas’s dy-
namic equations are discrete, not continuous. In order to
model the nonlinear Navier-Stokes equations of isotropic
fluids by lattice gases one has to require that the fourth-
rank viscosity tensor be isotropic, at least to O(u?) in
the fluid flow velocity u as w — 0. This condition is very
restrictive as to the type of regular space lattices allowed
in the construction of lattice gases. In fact, in two (four)
dimensions only the triangular lattice [face-centered hy-
percubic (FCHC) lattice] has the required symmetry. In
three dimensions there does not exist any lattice with
isotropic fourth-rank tensors [6]. Any fourth-rank tensor
(such as viscosity) on a lattice with inversion and reflec-
tion symmetries contains in general three independent
scalars (bulk, shear, and cubic viscosity). On triangular
and FCHC lattices and in isotropic systems the shear and
cubic viscosity coincide. This manifests itself in a twofold
degeneracy of a kinetic eigenvalue 2z (0) # 0, whereas for
finite k values this degeneracy is lifted, as we shall see.
Another aspect of isotropy of the hydrodynamic equa-
tions in real fluids is that the spectra are independent of
the direction of k, i.e., z)(k) = 25 (k). Of course, isotropy
in lattice gases is an idealization, a limiting property,
that can only be valid approximately at long wavelengths.
Furthermore, isotropy in lattice gases is only defined in
the restricted sense of applying to tensors of second and
fourth rank, but not to any higher-order tensors. At fi-
nite k lattice gases are no longer isotropic and the speed
and damping of sound depend on the direction of k as
is the case in crystals, and so do the kinematic viscosity
and heat diffusivity.

In the preceding paragraphs we have been emphasiz-
ing the parallels with the spectra of isotropic fluids. It is
worthwhile to also stress the differences. At finite wave
numbers the spectra z(k) of lattice gases still exhibit
the discrete lattice symmetries, which become more pro-
nounced with increasing k. The eigenvalues are in fact
periodic functions in reciprocal k space, with d indepen-
dent periods in a d-dimensional lattice. The effects of
lattice symmetries are clearly shown in the graphs of the
present paper.

(c) Generalized hydrodynamics. There are crossovers
between the different regimes described above. The most
interesting one for fluids is the regime of generalized hy-
drodynamics, where there is still a clear separation be-
tween the slow hydrodynamic modes and the fast ki-
netic modes, but constant transport coefficients in the
linearized hydrodynamic equations are no longer ade-
quate. They should be replaced by transport coefficients
that are slowly varying functions of the wave number
k. This implies that the relations between irreversible
fluxes (heat current, stress tensor) and thermodynamic

driving forces (temperature and velocity gradients) are
strictly nonlocal. The k-dependent transport coefficients
can be calculated explicitly from the Boltzmann equa-
tion. By investigating the excitation spectrum 2z (k) for
different wave numbers one can judge the size of the long-
wavelength region where the eigenmodes are hydrody-
namic in character with constant transport coefficients.
The crossover regime is particularly important in ana-
lyzing the transport coefficients measured in computer
simulations in lattice gases. Certain unexplained simula-
tion results in the literature [7,8], misleadingly described
as a “negative bulk viscosity,” are in fact pure effects of
generalized hydrodynamics. They can be explained quan-
titatively on the basis of the lattice Boltzmann equation,
as will also be shown in this paper. Transport coefficients
and damping constants are non-negative.

(d) Spatial instability. A recent and very interesting
application of the spectra deals with the dynamics of
phase separation in lattice-gas models for thermodynam-
ically unstable systems (spinodal decomposition), as oc-
curring in the long-range Van der Waals—type model of
Appert and Zaleski [9,10] or in the biased lattice gas of
Refs. [11,12]. Calculations of spectra show that the real
part of one or more eigenvalues z)(k) becomes positive
for |k| < ko, implying that the corresponding modes with
a wavelength larger than 27 /ko are unstable. The onset
of coarsening in spinodal decomposition and the typical
wavelength at which this occurs are well described by
the eigenvalue spectrum of the linear theory. In fact the
Boltzmann equation for the above lattice gas provides
a microscopic model that leads to the phenomenological
Cahn-Hilliard equation for spinodal decomposition [13].

After this summary of the information that is con-
tained in the spectra of soft modes, we give the plan
of the paper. In Sec. II the eigenvalue problem is for-
mulated. Section III describes the numerical study of
spectra and its implications, such as generalized hydro-
dynamics, thermal effects, and isotropy. Analytic stud-
ies of the spectrum in the long- and short-wavelength
limit and the consequences of symmetries are discussed
in Sec. IV. A discussion of the most salient features is
given in Sec. V.

II. EIGENVALUE PROBLEM

The eigenvalue problem studied in this paper is based
on the Boltzmann equation, where correlations between
time dependent fluctuations are neglected. In formula-
ting the problem we follow essentially the presentation of
Refs. [2,14] and generalize the theory to multispeed lat-
tice gases, as is necessary for a discussion of thermal mod-
els [15,16]. The average occupation f(r,c;,t) of a state
(r, c;) satisfies the nonlinear lattice Boltzmann equation,

f(r+egcit +1) = f(r, e, t) + L(f(t)), (1)

where ¢ = (1,2,...,b) labels the velocity channels of a
b-bit model, and I;(f) represents the nonlinear collision
term, accounting for gains and losses in the f’s. The sta-
tionary solution of this equation, f(r,c;,00) = fj(-’ with
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L(f° = 0, is the equilibrium distribution, and we re-
strict ourselves to basic equilibria where the total mo-
mentum vanishes and the fluid is macroscopically at rest.
In athermal lattice gases with only conservation of total
momentum and particle number, the stationary distribu-
tion is fJQ = f = p/b, where the density p is the average
number of particles per site. In thermal models, where
total momentum, particle number and energy are con-
served, the stationary distribution is the Fermi distribu-
tion,

f7 = 1/[1 + exp(—a + Be;)]. 2)

Here € = %c? is the kinetic energy, a and g are the chemi-
cal potential and reciprocal temperature, and p = j f}’
the density.

The equation for the linear excitation & f;(r,c;,t) =
f(r,cq,t) — f2 is obtained by linearizing the collision op-
erator I; around the stationary solution f?, i.e., I;(f° +
8f) = Q;6f; + O(6f?), where summation convention
has been used. The fluctuation at wave number k, intro-
duced in the preceding section, satisfies the basic eigen-

value equation
[em“)“k'c 1 Q] ka(k,c) =0 (3)

in matrix notation. Here ) (k,c) is a b vector with
components ¥r(k,c;) (7 = 1,2,...,b) and Q, k and
exp(ik - ¢) are b x b matrices. The last two are diag-
ona.l, i.e., Kij = niéij = f?(l - f,?)(szj and [exp ik - c]ij =
6i; exp(ik - ¢;). The linearized collision operator can be
expressed in terms of the basic transition probabilities
that define the collision rules of the lattice gas [6]. If
the model satisfies the detailed balance condition, then
the symmetry Q;;k; = k;§;; (no summation) holds. An
asymmetric case is treated in Ref. [12]. Here we restrict
ourselves to symmetric cases. The eigenmodes of (1) are
defined through

rkipa(k, c,t) = [e*°(1 + Q)] wa(k, c)
= exp[zx (K)t]sa(k, c). (4)

The b x b matrix §2;; can be calculated analytically or
numerically from its definition in terms of the collision
rules for the model [6].

In an athermal model the collision matrix Q and its
eigenvalues depend only on the density. In a thermal
model they depend both on density and temperature.
Once € is known, the eigenvalues of the matrix (3) can be
calculated numerically as a function of the wave number
k and the thermodynamic parameters.

The periodic lattice £, upon which the lattice gas
is defined, induces symmetries in the eigenvalue spec-
trum 2, (k) and implies that k can be restricted to the
first Brillouin zone of the reciprocal lattice £* with sites
Q = 2m(N161 + N2O2 + - - -) with N1, Ny, ... integers, be-
cause zy (k) is a periodic function z)(k + Q) = za(k). It
has all symmetries of the reciprocal lattice £*, such as
inversion symmetry 2)(k) = 2x(—k). If £ is the triangu-
lar lattice with basis or nearest-neighbor lattice vectors
cj = (cos[(j — 1)7/3],sin[(j — 1)7/3]) with j =1,2,...6,
then £* is the hexagonal lattice, as illustrated in Fig. 1,

FIG. 1. Wigner-Seitz cell of the reciprocal hexago-
nal lattice with primitive vectors 278; (i=1,2,3), where

61,3 = (£1,1/4/3) and 62 = (0,2//3).

with basis vectors 2w, satisfying 6, -c; = —1, 0, or 1.
The first Brillouin zone is the Wigner-Seitz cell (shaded
in Fig. 1) of L*.

In the next section we present the numerical results
for the spectra. We analyze their properties and study
their implications. Section IV deals with analytical cal-
culations.

III. STRUCTURE OF SPECTRA

The numerical problem is rather simple. It involves
the calculation of the b roots of the secular determinant
of the complex matrix in (3) as a function of the recipro-
cal lattice vector k. The eigenvalues z) (k) = Re zx(k) +
iIm z) (k) are in general complex, and Im 2z (k) is defined
mod 27. We first consider a two-dimensional lattice gas,
defined on a triangular lattice, that involves one rest par-
ticle with velocity co = 0 and six moving particles with
velocities c; (j = 1,...,6) equal to the nearest-neighbor
lattice vectors. The model is referred to as the seven-
bit FHP-III lattice gas, named after Frisch, Hasslacher,
and Pomeau [6], and its detailed collision rules are listed
Ref. [7]. The resulting dispersion relations are shown in
Fig. 2, where parts (a) and (b) show the real and imag-
inary parts of all seven eigenvalues in the direction of
highest symmetry, i.e., k parallel to the y axis. Parts
(c) and (d) refer to the perpendicular direction with k
parallel to the z axis. Inspection of Fig. 1 shows that
the periods in those two directions are 47/+/3 and 4,
respectively. There are several interesting features to be
discussed.

A. Hydrodynamic regime

The spectrum of Fig. 2 shows three soft hydrodynamic
modes, with Re z,(0) = 0, labeled {L,+}, and four hard
kinetic modes with Re 2,(0) < 0, labeled {4,5,6,7}. The
hydrodynamic modes consist of two propagating damped
sound modes (A = %) with Im z4 (k) = Fe(k)k # 0 and
one diffusive transverse momentum (shear) mode (A = 1)
with Im z, (k) = 0. The real parts of 24 (k) coincide and
are shown as the lower branch in Figs. 2(a) and 2(c). The
real parts of hydrodynamic and kinetic eigenvalues are
well separated for k < ki, where k; is the wave number
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FIG. 2. Real and imaginary part of the spectrum zx(k), for the seven-bit FHP-III model at density p = 1.4, with (a) and
(b) k = (0,k) and (c) and (d) k = (k,0). The labels refer to the “soft” shear (L) and sound (&) modes, the staggered modes

(s), and the “hard” kinetic (4,5,6,7) modes.

at which for the first time a hydrodynamic and kinetic
eigenvalue are equal. Wave numbers on the order of k;
characterize the kinetic regime. In Fig. 2, where the den-
sity p = 1.4, one has k; ~ 2.1. In a closely related lattice
gas with six velocity states ¢; per node, and referred to as
the athermal six-bit FHP-I model in Ref. [7], the kinetic
regime starts at much smaller wave numbers. One has,
for instance, k1 ~ 0.4 at p = 1.2.

In the limit of small k¥ (actually kfy < 1 where £
is the mean free path) the eigenvalues are given by the
hydrodynamic dispersion relations

z+ (k) = Ficsk — Tk?, 25 (k) = —vk?, (5)
where c; is the speed of sound, v is the shear viscosity,
and I is the sound damping constant, given in athermal
models by T' = 2 (v+¢) with ¢ the bulk viscosity. Because
of periodicity the same behavior pertains around every

site Q of the reciprocal lattice, with |k| in (5) replaced
by [k — Q.

B. Generalized hydrodynamics

When k increases, the dispersion relations of classical
hydrodynamics with k-independent transport coefficients

break down and we enter the regime of generalized hy-
drodynamics, where the dispersion relations can be rep-
resented approximately by (5) with a slowly varying k-
dependent speed of sound ¢,(k) and k-dependent trans-
port coefficients I'(k) and v(k). Inspection of Figs. 2(b)
and 2(d) shows that the speed of sound ¢, (k) is constant
up to k ~ 1. At what k values do the transport coef-
ficients become k dependent? To answer that question
for the FHP-I model we have plotted the shear viscosity
v(k) = —2z, (k)/k? (solid line) and the sound damping
constant I'(k) = —Re z4(k)/k? (dashed line) as a func-
tion of k for three different k directions in Fig. 3.

In the hydrodynamic regime one has constant trans-
port coefficients by definition. For & — 0 the sound
damping constant I'(k) — I' = v in FHP-I, since the
bulk viscosity vanishes in a single speed model. Inspec-
tion of Fig. 3 shows that the transport coefficients are ap-
proximately constant for |k| < kj ~ 0.1. Consequently,
if one wants to measure the constant transport coeffi-
cients in computer simulations from the decay of a si-
nusoidal wave, its wavelength A = 27 /k should satisfy
A > Ap =~ 60 lattice units. For the seven-bit FHP-III
model it can be read off from Figs. 2(a) and 2(c) that
kp ~ 2 or \j ~ 3.

For FHP-III the shear mode mixes at |k| = 2.1 with
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a kinetic mode, resulting in two strongly damped prop-
agating modes. This can be seen from Figs. 2(a)-2(d),
where two propagating modes appear at k = 2.1. Fig-
ure 2(b) also shows a propagation gap [Im z4 (k) = +]
in the interval 3.2 < |k| < 4.1.

The solid lines in Figs. 3(b) and 3(c) for FHP-I end at a
wave number k; ~ 0.4, where the shear mode mixes with
a kinetic mode and changes its character from a purely
diffusive to a propagating mode. For |k| values larger

0.0 I 1 1 i 1
00 01 02 03 04 05
k
1 e —
(b)
0.5
O'O J " 1 n 1 L n
00 01 02 03 04 05
k
1.5 T T T T
v(k) ©

0.0 1 1 e i n 1 "
0.0 0.1 02 03 04 0S5

k

FIG. 3. Shear viscosity v(k) and sound damping constant
I'(k) vs k, for the six-bit FHP-I model at p = 1.8, in three
different k directions: (a) k||¥, (b) k||%, and (c) k|| OF in
Fig. 1.

than ki, generalized hydrodynamics has lost all mean-
ing, at least with respect to the transverse momentum
or shear mode. In Fig. 3(a), where k ||y, the shear mode
does not mix with a kinetic mode. Similar propagation
gaps of sound modes have been found from the revised
Enskog theory for dense hard-sphere systems and have
been observed in the dynamic structure factor S(k,w)
in neutron-scattering experiments on liquid argon and
liquid metals [17]. The dispersion relations for a two-
dimensional thermal lattice gas, defined on a triangular
lattice with 19 different velocity states per node, are dis-
cussed in Ref. [15].

C. Negative bulk viscosity

The generalized hydrodynamic effects on transport co-
efficients, shown in Fig. 3, also provide a quantitative
explanation for some older puzzling simulation results in
the literature [7,8], described as a “negative bulk viscos-
ity.” The simulation data for the FHP-I model [7] are
shown in Fig. 4 as dots, referring to the shear viscosity,
and squares, referring to the sound damping constant.

1.6 N | I E— T
e e v(k) (simulation) @ 1
‘. @ 2I'(k) (simulation) 1
l‘ v(k) (theory)
\\e — - — 2I'(k) (theory)
1.2 [
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o 2I'(k) (simulation)
| v(k) (theory)
— - — 2I'(k) (theory)
1.2
F
0.8 r
0.4 —t —t
0.0 1.0 2.0 3.0

FIG. 4. k dependent shear viscosity v and sound damping
constant I' vs density p, for the six-bit FHP-I model, with k||
and (a) k = 0.1 and (b) k = 0.2, respectively. The simulation
data were taken from Ref. [9]. The graphs show that the
k-dependent bulk viscosity ¢(k) = 2I'(k) — v(k) is negative
for this k direction.
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We assume that these simulations were carried out with
a k vector parallel to a lattice vector, as in Fig. 3(b), and
not under some angle as in Figs. 3(a) and 3(c), although
this information is not provided in Ref. [7]. The com-
puter experiments were carried out at wavelengths be-
tween 30 and 80 lattice units, corresponding to k ~ 0.2
and k ~ 0.08, respectively, and the results were aver-
aged over this k interval. In Fig. 4 the simulation data
are compared with the k-dependent shear viscosity v(k)
(solid line) and the k-dependent sound damping constant
2T'(k) (dashed line).

In addition to the (positive) wave-number-dependent
damping coefficients v(k) and I'(k) one may also intro-
duce a wave-number-dependent bulk viscosity {(k) =
2I'(k) — v(k) based on the analogous formula ¢ = 2I" — v,
valid in the long-wavelength limit, where { > 0 in the
FHP-III model and ¢ = 0 in the FHP-I model. In-
spection of Fig. 3 shows that ((k) is negative for k||%
[Fig. 3(b)] and positive for k||§ [Fig. 3(a)] in the range
of wave numbers of interest in the simulations. This is
confirmed in a more quantitative manner by Figs. 4(a)
and 4(b), where the generalized hydrodynamics results
at k = (0.1,0) and k = (0.2, 0) are compared with com-
puter simulations, obtained by averaging the simulation
data over the k interval (0.08,0.2). The observation that
2Tsim < Vsim [7,8] has been misinterpreted as a negative
bulk viscosity. The good agreement between theory and
simulations, especially near the large k end of the aver-
aging interval, convincingly shows that the experiments
were done outside the range of classical hydrodynamics.
The essential point that explains the large difference be-
tween v(k) and 2I'(k) in Fig. 4 is that the two curves
in Fig. 3(b) move away from each other with increasing
k. Suppose one would do computer experiments in a k
direction making an angle of 30° with a lattice vector, as
in Fig. 3(a). On the basis of the same arguments it would
then follow that possible simulation data for vgim (k) and
2Tgim (k) would almost coincide, but the inequality would
be reversed. In Ref. [8] another simulation result on neg-
ative bulk viscosity is reported, also for a six-bit triangu-
lar lattice gas with collision rules slightly different from
FHP-I. The k values used in the computer experiments
are not listed, so that a quantitative comparison with the
theory is not possible. We stress that the negative bulk
viscosity effect is not a finite-size effect. It also occurs on
an infinite lattice at the same k vector.

D. Thermal effects

The simplest thermal lattice gas is a nine-bit model,
defined on a square lattice, with four speed-1, four speed-
V2 particles, and one rest particle. It is discussed in
[18,19]. Figure 5 shows the hydrodynamic part of the
spectrum z) (k) with k ||%X or §, for this lattice-gas model.
The five kinetic eigenvalues (not shown) can become as
large as 4.8 for small k. In thermal models energy is
conserved. This leads to an additional hydrodynamic
mode, the heat mode, labeled A = T, with a dispersion
relation for k — 0,

0.2 T T T T
1
“
4 T
N 01 ]
(]
=
+
0.0 . 1 L 1 i 1
0.0 2.0 4.0 60

k
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FIG. 5. Hydrodynamic part of the spectrum 2z, (k), with
k||(1,0), for the nine-bit thermal square lattice gas of
Ref. [19,20] at e* = 0.8 and e® = 0.64, yielding p = 3.36.
The labels refer to the shear (L), heat (T'), and sound (&)
modes.

ZT(k) = -—DTkz, (6)

where Dr is the thermal diffusivity. Inspection of Fig. 5
shows the existence of four hydrodynamic modes. The
lowest branch at small k represents the two sound mode
eigenvalues z4(k), the middle branch the shear mode
eigenvalue z; (k), and the top branch the heat mode
eigenvalue zp(k). Around k = (,0) one of the ki-
netic eigenvalues becomes smaller than 0.2. Also close to
k = (m,0) the two propagating sound modes change into
a pair of slow diffusive modes (see Sec. IIIF on spurious
soft modes). For k < 2.7 the real parts of hydrodynamic
and kinetic eigenvalues are well separated. However, the
k range for which standard hydrodynamics holds is ex-
tremely small, as is shown in Fig. 6 for the k-dependent
viscosity v(k) and in Fig. 7 for the k-dependent heat dif-
fusivity Dr(k) = —2zr(k)/k2. Both figures are extracted
from Fig. 5. Generalized hydrodynamic effects are par-
ticularly strong in Fig. 7, where Dr(k) is only constant

for A = 2w/k > A =~ 50 lattice units. For A < X\,
04 [
—XiIao
0.3 [ k@D

00 b—r—
0.

FIG. 6. Viscosity v(k) vs k, for the model of Fig. 5, with
k||(1,0) (solid line) and k||(1,1) (dashed line).
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FIG. 7. Heat diffusivity Dz (k) vs k, for the model of Fig. 5,
with k]||(1,0) (solid line) and k||(1,1) (dashed line).

the heat diffusivity Dr(k) rapidly falls off by an order
of magnitude. For the shear viscosity the effects of gen-
eralized hydrodynamics are less pronounced and become
only noticeable for A < 25.

In conclusion, the nine-bit model, apart from being
anisotropic, as discussed in Sec. III E, is not suitable to
study Fourier’s heat law with constant transport coeffi-
cients. The relation between the heat flux and the tem-
perature gradient is strongly nonlocal, extending over a
distance A\p ~ 50, as compared to Ay ~ 3 in the FHP-III
model. In simulations of the nine-bit square lattice gas
one would need a system size a factor (50/3)2 larger than
in FHP-III to have an equivalent range of k values where
standard hydrodynamic behavior holds.

E. Isotropy

The isotropy of the spectrum of the FHP-III lattice
gas at small & is due to the hexagonal symmetry of the
triangular lattice underlying these models. In Fig. 2 the
real and imaginary parts of z)(k) are approximately in-
dependent of the direction of k for small k. At larger k
values the isotropy breaks down for all lattices. With de-
creasing density the isotropy breaks down at smaller and
smaller k£ values. The pronounced difference between the
results for the different k directions in Fig. 4, as discussed
in Sec. III B on generalized hydrodynamics, is another il-
lustration of anisotropic effects in lattice gases.

On square lattices the spectrum is anisotropic even on
the longest wavelengths, as shown in Fig. 6 for the de-
cay rate z, (k) of the shear mode. This quantity can be
expressed in terms of the (L£1£) element of the fourth-
rank viscosity tensor v, Where £ refers to longitudinal
and L to transverse components with respect to k. On
a square lattice this tensor is not isotropic and contains
in principle three different types of scalar viscosities v, 19,
and ¢ (¢ = O in the nine-bit square lattice gas), as
discussed in Ref. [19]. From that reference one readily
derives the angular dependence of the damping constant
of the shear mode as |k| — 0. The result is
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v(k) = viere(k) = veos® ¢ + Isin’ ¢, (7)

where cos(%¢) = k, is the z component of the unit vector
k = k/|k|. The solid line in Fig. 6 refers to k along the
% axis (¢ = 0) and the dashed line to k along the main
diagonal (3¢ = %n).

F. Spurious soft modes

Another conspicuous feature in the spectra zy (k) is the
occurrence of a soft mode at k = (0,27/+/3) in Fig. 2(a)
and at k = (27,0) in Fig. 2(c). These soft modes are
the well-known staggered momentum densities [3]. They
occur at the centers of the faces of the first Brillouin zone
(A, A’, A" and equivalent points in Fig. 1). In the vicinity
of the point A the spectrum can be represented by [14]

zg(k) = —{Dj cos® x + D, sin® x} |k — 76|? (8)

with cos x = k- 6. Carets denote unit vectors. The stag-
gered diffusivity is not isotropic and can be decomposed
into a longitudinal (D)) and a transverse (D) diffusiv-
ity. For k = (0, k,) [see Fig. 2(a)] and k = (kz,0) [see
Fig. 2(c)] it reduces to

27

zo(ky) = =Dy (ky - %Y,

Zg(kz) = —D_]_(kz b 277')2.

In Fig. 5 a similar staggered momentum mode can be
observed at k = (m,0) and k = (0, 7). The corresponding
diffusivities have been calculated in Refs. [3,20] for six-
and seven-bit athermal triangular lattice gases and in
Ref. [19] for the thermal nine-bit lattice gas. In all models
D, = v, on the basis of lattice symmetries, as will be
shown in Sec. IVC. This can also be seen in Fig. 2(c)
by comparing the curvature of the soft modes at k = 0
and k = 27/v/3. The longitudinal diffusivity Dy has in
general no relationship to either shear or bulk viscosity
[note the difference in curvature between the soft modes
at k = 0 and k = 27 in Fig. 2(a)].

(9)

IV. ANALYTIC RESULTS
A. Hydrodynamic regime

One of the main interests of lattice gases is their ap-
plicability for simulating nonequilibrium fluids. Hence
the most interesting part of the spectrum is the hydro-
dynamic part with phenomena varying on spatial scales
large compared to the lattice distance and large com-
pared to the mean free path. By setting first k = 0 in
(3) we obtain

(1 + Q)kuy, = explzn(0)]Kuy = (1 — Wn)KUn, (10)

where —w,, (wn > 0) are the eigenvalues of the linearized
collision operator. The (d + 2) collisional invariants for
a d-dimensional thermal lattice gas are the zero eigen-
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vectors (wn, = 0), with un(c) = {1,¢z,¢y,...,cq, 3¢}
In athermal models %cz is excluded from this set since
energy is not conserved. The remaining kinetic eigen-
values obey 0 < w, < 2, where w, is explicitly known
for the majority of thermal and athermal lattice gases
[15,19,20]. In FHP-I all eigenvalues satisfy the inequal-
ity w, < 1. In FHP-III some w,’s do exceed unity, and
z2n(0) = mi + In|w, — 1| + mod(27i). This can be seen
in Fig. 2 where Im2¢(0) = —m and Re z6(0) ~ 2.0. Fur-
thermore, the twofold-degenerate kinetic eigenvalue with
Re 2z4,5(0) ~ 2.5 corresponds to w45 = w,, which is di-
rectly related to the shear viscosity v, as we shall see
below.

For a further analysis of the spectrum we need the
explicit form of the eigenfunctions u,(c), defined by
QKU = —wpKuy,. In athermal models the factor x can
be dropped, because k;; = f(1 — f)8;;, with f = p/b, is
simply a multiple of the unit matrix. The simplest non-
trivial examples are again the six- and seven-bit triangu-
lar lattice gases, where the eigenfunctions are b vectors
(b = 6,7) with components u,(c;), with j = 1,2,...6, for
six-bit models and 7 = 0,1,2,...,6 for seven-bit models
with cg = 0. They are given in Table I, which has been
taken from Ref. [20]. For the thermal nine-bit square
lattice gas similar tables have been constructed [19]. In
Fig. 2 the kinetic eigenvalues at small k values are la-
beled with the labels n = 4,5,6,7 of the corresponding
eigenfunctions u, in Table I.

The eigenfunction u,(c) can be used as a starting point
for determining the eigenfunctions and eigenvalues of (3)
as a Taylor series expansion in a small parameter k, or
more precisely k4o. The dimensionless parameter satis-
fies kfp < 1, implying that the relevant wavelengths are
large compared to the mean free path £y. In the kinetic
regime k¢, is of order unity and in the free-particle regime
kfy > 1. In the free-particle regime, to be discussed in
Sec. IV B, perturbation expansions will be based on the
small parameter 1/(k&p).

In the hydrodynamic regime one writes for the soft
modes

(k) = ikz§) + (ik)22D + -
(11)
ali,e) = $0(e) +---.

TABLE I. Eigenfunctions un(c) and eigenvalues wy, of (10)
for the six- and seven-bit FHP models and parity of u,(c)
under reflections. The eigenvalues w, (twofold degenerate),
wg and w¢ are given in Ref. [14]. ¢, is the speed of sound.

n un(c) wn Parity Parity
T o —T Yo -y

1 1 0 + +

2 Ce 0 — +

3 Cy 0 + —

4 CzCy wy - —

5 cZ—c2 wy + +

6 (4c2 — 3)cs wg - +

7 %c2 —Cs we¢ + +

This can be done by using degenerate perturbation the-
ory. For continuous gases the method is described in
Ref. [21]. Some technical complications in lattice gases,
resulting from the discreteness of space, time and velocity
variables, are discussed in [2,14]. The extension to ther-
mal models is straightforward [15]. Perturbation theory
yields hydrodynamic dispersion relations in agreement
with (5) together with explicit expressions for the sound
damping constant I' = %(V + ¢), kinematic viscosity v,
and bulk viscosity ¢. For the FHP-I and FHP-III models
these values are listed in Ref. [7]. In the long-wavelength
limit the hydrodynamic modes are found as linear com-
binations of the collisional invariants, yielding to zeroth
order in the expansion parameter k&

WOy = { e k  (athermal)

* 2c?+csc-k  (thermal),
P (c) = c ki, (12)
U’é? ) (c) = 3c* —c? (thermal only) ,

where k and k are unit vectors, parallel and perpendic-
ular to k, respectively. The (adiabatic) speed of sound
¢s is given by

Zcf /db (athermal)
-1 (19)

%zmcf / chf (thermal)
i P

with x; = f2(1 — f2).

dp
C‘g: d_p

B. Free-particle regime

In the kinetic regime, where kfy ~ 1, perturbation
methods cannot be used. However, in the free-particle
regime, where 1/(kfp) is a small parameter, analytic re-
sults for the spectra can again be obtained perturba-
tively. The fewer the number of (binary, triple, quadru-
ple, etc.) collisions, the sooner the eigenvalue spectrum
of (3) crosses over from the hydrodynamic spectrum to
a free-particle spectrum, where the effect of the collision
matrix Q is only a small perturbation on the propagat-
ing part of the operator in Eq. (3). A reduction of the
collision frequency and increase of the mean free path
is not only realized by reducing the density, but also by
considering models with very few active collisions. This
effect can be seen by comparing the plots in Figs. 2 and 8.
They show the spectrum of the seven-bit FHP-III model,
where ten collisions are active 7], and that of the six-bit
FHP-I model, where there are only two active collisions
(binary and triple collisions with a vanishing total mo-
mentum). It is therefore expected that the features of
the free-particle spectra are more dominant in FHP-I, as
illustrated in Fig. 8.

Before commenting on these numerical results we con-
sider the eigenvalue equation (3) for small densities (p =
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FIG. 8. Real part of the spectrum zy(k), for the six-bit
FHP-I model at p = 2.4, vs k for k|| OF in Fig. 1.

bf — 0). At f = 0 (free-particle case) the eigenvalues
and eigenmodes for the FHP-I model are
RAk) = —ik-cx (A=1,2,...,6),
(14)

We;) = by (G=1,2...,6),

where A labels the eigenmodes and j the components
of the six vectors ¥ (c). The superscript (0) refers to
vanishing density, i.e., all six modes are propagating. For
small densities and general k vectors (differing from the

special directions OA and OA’ of highest symmetry in
Fig. 1) first-order perturbation theory yields

za(k) = —tk - cx + Qan. (15)
The matrix elements of the circulant matrix €;; only de-
pend on |¢ — j|, and straightforward calculation yields
that Qxx = —f(1 — f)?, independent of A\. Therefore
Re z\(k) = f(1 — f)? is sixfold degenerate. Minor mod-
ifications yield for FHP-III at low densities 2y ~ —4f
(A = 1,2,...,6) and Qoo ~ —6f, where A = 0 refers
to the rest particle state. This yields, instead of (15),
six propagating modes with Re z)(k) ~ —4f with a
sixfold degeneracy, and one nonpropagating mode with
zo(k) ~ —6f. Figure 8 shows an FHP-I spectrum in
a low-symmetry k direction. Perturbation results are in
good agreement with the analytical results for all |k| > 1.
For k in directions of high symmetry, for instance, paral-
lel to the z or y axis, the eigenvalues at large k values can
be calculated by first-order perturbation theory for de-
generate levels. One finds slightly different results, which
also agree very well with the numerical evaluation.

The perturbation results for the free-particle regime
in the model FHP-III are only observed for densities
f < 0.05. However, the FHP-I spectra show strong
free-particle features at all densities, as can be seen
from Fig. 8 (f = 0.4) for the real parts of the eigen-
values. One observes a narrow hydrodynamic regime
(k < 0.1; see also Fig. 3) and a subsequent generalized
hydrodynamic regime, after which the spectra rapidly

cross over to typical free-particle features at & > 1,
with a wave-number-independent damping of propagat-
ing modes. The predicted eigenvalues in (15), based on
first-order perturbation theory, are quantitatively correct
for all densities within a few percent. The propagation
speeds {%\/3, %, 1} of the modes are in very good agree-
ment with the free-particle predictions for all densities
in the whole Brillouin zone, except for a very small hy-
drodynamic region around k£ = 0, where two propagating
sound modes with speed ¢; = 1/ V/2, one soft shear mode,
and three nonpropagating kinetic modes are observed.

In recent simulations on the FHP-I model, carried
out by Grosfils, Boon, and Lallemand [22], the dynamic
structure factor S(k,w) was measured at a reduced den-
sity p = 2.33, for wave vectors in different directions
and with magnitudes k£ ranging from 0.07 to 0.7. These
wave numbers extend well into the regime of general-
ized hydrodynamics. The authors observed a Brillouin
doublet, located approximately at Aw =~ Zc,k with
cs ~1/4/2 \/— The width of the Brillouin lines is given by
—Re 2+ (k) = I'(k)k? with a k-dependent sound damping
constant, which was parametrized as

— Re 23 (k) = k°T'(k) = Tk?/(1 + k2€?). (16)

We compare this formula with the curve for —Re 24 (k)
in Fig. 8 (smallest eigenvalue at small k). For large
|k|, the quantity k2T'(co) ~ TI'/£2? can be estimated as
I11] = f(1 — £)? on the basis of (15) for arbitrary k di-
rections. The simulation value in Ref. [22], I'(0) = 0.313,
is roughly in agreement with the theoretical predlctlon
r = 21/ = 0.440; the measured correlation length [22],
&sim ~ 4.6, is in the right order of magnitude of the the-
oretical estimate, £theor ~ 1.7 at this density.

C. Symmetries of spectra

The two preceding subsections are based on perturba-
tion theory. Of great help in analyzing eigenvalue prob-
lems are the symmetry operations that leave the matrix
in (3) invariant. Of course the k vector in (3) destroys
most of the lattice symmetries of the collision matrix
Q;; that is invariant under all symmetries of the discrete
space group of the underlying lattice.

For general k directions the matrix in (3) has no spe-
cial symmetries. However, if k is parallel to the z axis,
the matrix depends only on exp(ikc;) and the full matrix
is then invariant under reflection y < —y. Similar obser-
vations hold for k parallel to the y axis. On a triangular
lattice these two invariances are distinct, on the square
lattice they are not. Concentrating on the FHP models,
we can therefore decompose the b-dimensional basis (b =
6 or 7) of un,(c) in Table I into a two-dimensional sub-
space of odd parity under the reflection y < —y, spanned
by the eigenvectors uz(c) and u4(c), and into a four-
dimensional (b = 6) or five-dimensional subspace (b =7)
of even parity, spanned by the remaining eigenvectors
un(c). Therefore the matrix (3) with k = (k,0) has a
block-diagonal form as all matrix elements connecting
the odd and even subspaces vanish [2]. The (3,4) block
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is of odd parity, where k = (k,0) has the eigenvalues

exple3,a(k)] = As (k)
= (1 — jwy)cos(3k)
£[(1 - dw,)? cos?(3k) — 1 +w,]V?,
(17)

implying the relation Az 4(k + 27) = —A4,3(k). Conse-
quently, Re 23 4(k + 2m) = Re 24,3(k) are simply shifted
by an amount 27w. This symmetry also shows that the
diffusivities v and D) in Fig. 2(c) of the shear mode
z, (k) = —vk? and the staggered mode z¢(k) = —D, (k—
27)? are necessarily equal. The shift symmetry is absent
in Fig. 2(a), where k = (0,k). It is also easy to verify
that Eq. (17) explains the horizontal parts in Rezs 4(k)
for 2 Sk S 4 and 85 S kS 10.5 in Fig. 2(c).

In the case k = (0, k) the matrix (3) for FHP models is
invariant under the reflection z < —zx, and Table I shows
that the b-dimensional vector space of eigenfunctions of
(3) decomposes into a three-dimensional subspace of odd
parity and a (b — 3)-dimensional subspace of even par-
ity with corresponding block-diagonal forms. No simple
properties follow from this partial diagonalization.

Analogous reflection symmetries are present in models
based on the square lattice such as the nine-bit thermal
lattice gas [16]. One symmetry is a reflection z < —z
for k = (0,k), or equivalently y < —y for k = (k,0).
The eigenspace of odd parity is again three dimensional,
and the secular equation factorizes into a cubic equation
and into one of degree 6. A second reflection symmetry
(z < y) is present for k = (k, k)/v/2. The eigenspace of
odd parity is again three dimensional, with similar conse-
quences for the secular equation. None of these reflection
symmetries lead to simple properties of the eigenvalue
spectrum.

V. DISCUSSION

The eigenvalue spectra of the kinetic equation for
single-particle-type fluctuations in a lattice gas as a func-
tion of the wave vector have been investigated both nu-
merically and analytically. Most of the k interval is only
accessible by numerical methods. Analytical results can
be obtained by perturbative methods when the wave-
length is large or small compared to the mean free path
£o. Depending on the relevant k vector we distinguish a
(generalized) hydrodynamic regime (k¢y < 1), a kinetic
regime (kfp ~ 1), and a free-particle or Knudsen regime
(ko > 1).

Of paramount interest to fluid dynamics is the hydro-
dynamic regime, controlled by long-lived collective exci-
tations with eigenvalues Re 2 (k) ~ O(k?), related to the
conservation laws. A lattice gas is suitable for hydrody-
namic simulations if some minimal criteria are satisfied:
for wavelengths A > Ap, where Ay, should be on the order
of a few lattice units, (i) the kinetic excitations should
decay rapidly compared to the hydrodynamic ones and
(ii) the transport coefficients appearing in the decay rates
of the hydrodynamic modes should be independent of k.

According to these criteria the athermal FHP-III and the
thermal 19-bit models are suitable for simulations, but
the athermal FHP-I and the thermal nine-bit square lat-
tice gas are not, because for lattices up to 250 x 250 their
time dependence is totally dominated by nonlocal, i.e.,
k-dependent, hydrodynamics.

For A < Aj we are in the generalized hydrodynamics
regime, where the speed of sound and transport coeffi-
cients (viscosities, heat diffusivity) become k dependent
(see Figs. 3, 4, 6, and 7). This implies that the stress
tensor and heat current are nonlocal functions of the gra-
dients of flow field and temperature. These calculations
are nonpertubative, and extend beyond the Chapman-
Enskog expansion.

We have shown the necessity of using the concepts
of generalized hydrodynamics for explaining some older
simulation results obtained for six-bit FHP lattice gases
with a small number of allowed collisions [7,8]. In par-
ticular we have resolved the puzzling observations of a
negative bulk viscosity in Refs. [7,8]. We have also shown
that the strong dispersion of the sound damping coeffi-
cient observed in Ref. [22] can be explained in a quanti-
tative manner from the (numerically determined) eigen-
value spectrum of the Boltzmann equation.

The spectrum is an ideal tool to investigate the
isotropy of the lattice gases. The isotropy of lattice gases
defined on triangular lattices, is limited to small |k| val-
ues, as is illustrated in Figs. 2-4. For example, the data
in Fig. 4 for v(k) and 2I'(k) (both theoretical and from
simulations) would essentially have coincided if simula-
tions had been performed at a k vector rotated over éﬂ‘
with respect to a nearest-neighbor vector. On square
lattices strong anisotropies occur, as illustrated in Fig. 6.
The damping constant of the shear mode may differ by
a factor of 2, depending on the direction of the k vector.

The spectra very clearly exhibit the existence of spu-
rious conservation laws, which give rise to soft modes at
finite wave numbers, as can be seen in the middle of the
k interval in Figs. 2(a) and 2(c). Thermal lattice gases
show an extra soft long-wavelength mode, the heat dif-
fusion mode.

In lattice gases showing phase separation [9-12] the
spectrum shows an instability of the Cahn-Hilliard type
[13], caused by sound modes having Re 21 > 0 for wave-
lengths exceeding a certain value. The spectrum has been
used to predict the wavelength and time scale of the onset
of coarsening in phase separation [11,12].

The analysis presented in this paper is based on the lin-
ear Boltzmann equation, which accounts for short-ranged
spatial correlations (i.e., k-dependent transport coeffi-
cients), but neglects all memory effects. Therefore the
present theory does not yield any frequency-dependent
transport coefficients. However, if Eq. (1) would be ex-
tended to include ring collisions, then memory effects and
long-time tails would be present, and the linearized col-
lision operator  in Eq. (3) would become wave-number
and frequency dependent. Still, the quantitative effects
of long-time tails are very small [23,24].

In concluding this paper we emphasize that our dis-
cussion has been restricted to the more generic features
of the eigenvalue spectra of single-particle fluctuations,
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using an analysis based on mean-field theory. The main
importance of analyzing the spectral properties is that
they provide clear and crucial information about the ba-
sic criteria that lattice gases have to satisfy in order to
qualify as models for nonequilibrium fluids, i.e., the exis-
tence of a sufficiently large range of wave numbers with
strictly local transport coefficients, the isotropy of the
fluid dynamic equations, the absence of spurious invari-
ants, and the linear stability of spatial fluctuations.
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